

1.4435/AISI 316L

Acier inoxydable austénitique du type 316L de qualité supérieure

Caractéristiques et particularités

Les teneurs en Cr, Ni et Mo plus élevées que celles de la nuance 1.4404 rendent l'acier CHRONIFER® Special 35 plus noble. Elles lui assurent une résistance à la corrosion générale supérieure, dont en milieux acides non-oxydants ou contenant des halogènes. Sa faible teneur en S réduit considérablement le risque de corrosion par piqûres. La propreté de sa structure permet d'obtenir des états de surface satisfaisant son utilisation en médecine. Le risque de corrosion inter-cristalline est très fortement réduit grâce à sa faible teneur en C. Cet acier ne peut être durci que par écrouissage. Il peut éventuellement présenter des traces de ferrite $\partial(\text{Delta})$ ferromagnétique et de martensite $\alpha(\text{Alpha})$ également magnétique à de hauts taux de déformation. Son soudage est aisé. Son polissage est facile. Il peut être utilisé au continu jusqu'à 400°C .

Utilisations

Ses domaines d'utilisation sont très vastes, comme par exemple dans les industries chimiques, pharmaceutiques, alimentaires et pétrochimiques. Cet acier convient bien aux travaux de la pâte à papier et de l'industrie textile. Il est également utilisé dans l'industrie horlogère.

Normes

Numéro matière 1.4435

EN 10088-3 X2CrNiMo18-14-3 DIN X2CrNiMo18-14-3

AFNOR X2CrNiMo 18-14-3 (anciennement Z 3 CND 18-14-3)

AISI/SAE 316L ASTM A276 NF S 94-090 JIS SUS 316

Composition chimique

(%poids)

С Si Ρ S Cr Fe Mn Ni Mo Ν 17.0 solde max. max. max. max. max. 13.5 2.50 max. 0.030 1.00 2.00 0.045 0.03 19.0 15.0 3.00 0.10

Dimensions et exécutions

Standard: barres de 3 m (+50/0 mm), torches pour Escomatic

Propriétés mécaniques : Rm 650-950 MPa :

Barres Ø < 0.8-18 mm: ISO h8
Barres Ø ≥ 2.00 mm: ISO h6 (h7)

Fils Ø ≥ 0.80 max 3.00 mm: ISO fg7, torches pour Escomatic

Malrond max:
½ tolérance du diamètre

Autres exécutions sur demande

Conditionnement

Standard: barres de 3 m (+50/0 mm), torches pour Escomatic

Barres Ø ≥ 2.00 mm: étiré à froid, meulé, poli, Ra max 0.4 μm (N5)

pointées 60°, chanfreinées 45°

Barres < 2.00 mm: état de surface: étiré à froid

Fils Ø < max 3.00 mm: état de surface: étiré à froid, torches pour Escomatic

Autres exécutions sur demande

Disponibilité

Dimensions standards en stock, voir: Programme de livraison

Conditions de coupe

Usinabilité: relativement difficile, satisfaisante à l'état écroui

Vitesse de coupe: $V_c \approx 25$ - 40 m/min. Lubrification: choix individuel

 Les conditions de coupe optimales sont fonction de la machine-outil, des outils de coupe, de la taille du copeau du lubrifiant et des tolérances et/ou de l'état de surface à réaliser.

1.4435/AISI 316L

Acier inoxydable austénitique du type 316L de qualité supérieure

Propreté de la structure L'acier CHRONIFER® Special 35 est un acier relativement propre permettant de réaliser des états de surface polis satisfaisants.

Grosseur du grain

Selon ASTM E47:

Barres laminées à chaud ASTM Nr. ≥ 6-7, grains isolés > 5

Fils étirés à froid ASTM Nr. ≥ 7-8

Ferrite δ (Delta)

L'acier CHRONIFER® Special 35 peut contenir des traces de ferrite ∂(Delta). Selon les formules d'équivalence du Cr_{eq} et Ni_{eq} du diagramme de Schaeffler-De Long tous, modifiés par Otokumpu:

• Cr_{eq} = 1.5Si + Cr + Mo + 2Ti + 0.5Nb

• $Ni_{eq} = 30(C + N) + 0.5Mn + Ni + 0.5(Cu + Co)$

• Ferrite Number FN ou $\%_{\text{vol}}$ Ferrite δ (Delta) FN = ([{1.375 (Creq - 16} + 10] - Nieq) 2.586

Des valeurs négatives de FN indiquent l'absence de ferrite δ(Delta).

PREN

PREN = %Cr + 3.3%Mo + 18%N

Valeurs clés calculées: min. 26.8 / max. 30.7

Formage

À chaud, forgeage p. ex.:

960 – 1100°C, trempe/refroidissement rapide

• Si la température devrait chuter en-dessous de 960°C, un recuit de remise en solution devrait être effectué préventivement.

À froid: sans limitations, Voir aussi diagramme de durcissement par écrouissage p. 3

Recuit de mise en solution

Recuit de mise en solution: 1060-1080°C, trempe/refroidissement rapide

- Un taux d'écrouissage supérieur à 10 15% est recommandé, afin de réduire le risque d'un grossissement du grain trop intense et rapide.
- Le domaine de température inférieure à 960°C doit être évité, car il peut conduire à la formation et précipitation de la phase σ(Sigma) indésirable.
- La formation de la phase σ(Sigma) conduit à une fragilité, réduction de la ductilité et de la résistance à la corrosion.

Dans ce cas, un recuit de mise en solution à 1060-1080°C est recommandé

Durcissement

L'acier CHRONIFER® Special 35 ne peut pas être durci thermiquement. Il ne peut être durci que par écrouissage à froid.

Microstructures

Etat de livraison, laminé à chaud: austénite recuite

Pour l'usinage et le polissage: austénite recuite ou écrouie

Polissage

Polissage électrolytique: approprié

- La ferrite ∂(Delta) et la phase σ(Sigma) sont mises en relief par un polissage élec trolytique.
- L'acier CHRONIFER[®] Special 35 peut contenir des traces de ferrite ∂(Delta).
- Dans le cas d'une formation involontaire de la Phase σ(Sigma), un traitement de remise en solution à 1060-1080°C peut être nécessaire afin de na pas compromettre tant la qualité du polissage que la résistance à la corrosion.

Plus d'info.

Soudage

Facilement réalisable

1.4435/AISI 316L

Acier inoxydable austénitique du type 316L de qualité supérieure

Durcissement par écrouissage

• L'acier CHRONIFER® Special 35ne peut être durci que par écrouissage à froid.

La Figure 1 montre les courbes de durcissement Rm, R0.2 et de la limite de fatigue en flexion rotative alternée à 10⁷ cycles, obtenues avec l'acier 1.4441 pour implants, proche de l'acier CHRONIFER® Special 35, écroui à froid, en fonction du taux d'écrouissage réalisé.

Figure 1 Résistance Rm et Limite élastique Ro.2 Limite de fatigue à 10⁷ Cycles

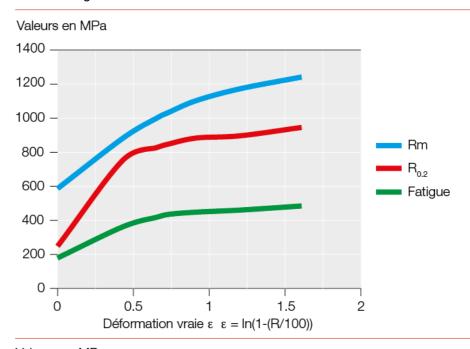
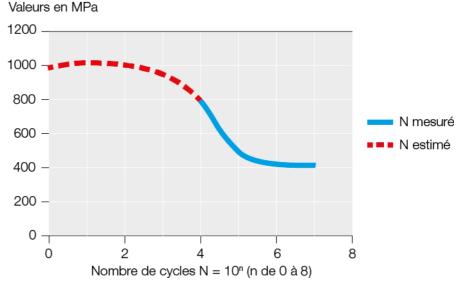



Figure 2 Courbe de Wöhler (courbe de fatigue)

1.4435/AISI 316L

Acier inoxydable austénitique du type 316L de qualité supérieure

Marquage laser

L'échauffement dans la zone affectée par la chaleur HAZ (Heat Affected Zone) d'un marquage laser normal ne devrait pas affecter la microstructure. Marquage laser: Plus d'info.

Oxydation superficielle

Une oxydation thermique produit des oxydes superficiels qui doivent être éliminés mécaniquement ou chimiquement.

 Les oxydes colorés ou la calamine peuvent réduire considérablement la résistance à la corrosion.

Décapage - Passivation

Les procédés et produits utilisés doivent être adaptés aux exigences des aciers inoxydables austénitiques. <u>Plus d'info.</u>

- Une réaction potentielle de "Flash back" peut être évitée en effectuent toujours un décapage avant la passivation.
- Un traitement de passivation n'est pas nécessaire après un polissage électrolytique.

Résistance à la corrosion

- Etat de surface optimal: Surface propre, polie et passivée. Plus d'info.
- La résistance à la corrosion de l'acier CHRONIFER Special 35 dans les milieux types d'utilisation comme les composants pour l'habillage de la montre sont indiqués ci-dessous.

Type de corrosion	Etat	Susceptibilité à la corrosion		
Corrosion par piqûres	tous	résistant		
Brouillard salin	tous	résistant		
Eau de mer	tous	résistant		
	recuit	résistant		
Corrosion	écroui	Généralement pas		
sous tension	≤ 63% ε =1	susceptible		
	Dans certaines circonstances un recuit de détente à basses températures 250-300°C/1h peut être effectué préventivement.			

Corrosion galvanique

• L'acier CHRONIFER® Special 35 est plus noble que la plupart des métaux, y compris les aciers inoxydables 18/8 courants.

L'électrolyte et les métaux immédiatement environnants peuvent dans certains cas former un pile conduisant à une corrosion galvanique.

Précautions élémentaires

- La protection la plus simple et efficace et de toujours s'assurer que la surface soit propre et polie.
- Bien nettoyer les pièces et composants (ne pas tolérer de résidus d'utilisation) et les sécher.
- N'utiliser que des solutions de nettoyage, lavage et de désinfection ne contenant pas de chlore.

Magnétisme

Ferromagnétisme dû à la présence de ferrite ∂ (Delta):

Cet acier peut suivant sa composition exacte présenter des traces de ferrite ∂
 (Delta), à raison de ≥ 0.5%vol et de perméabilité relative > 1.003

Ferromagnétisme dû à la formation de martensite α (Alpha) ferromagnétique à haut taux d'écrouissage:

 Cet acier fortement écroui peut suivant sa composition présenter des traces de martensite α (Alpha) ferromagnétique et une perméabilité relative > 1.003
Plus d'info.

1.4435/AISI 316L

Acier inoxydable austénitique du type 316L de qualité supérieure

Propriétés physiques

Propriétés	Unité	Température (°C)				
		20	200	300	400	500
Densité	g cm ⁻³	7.95				
Module élastique E	GPa	186.4				
Coefficient de Poisson		0.29				
Résistance électrique	Ω.mm ² .m ⁻¹	0.74				
Dilatation thermique	m m ⁻¹ K ⁻¹	20-100°C	20-200°C	20-300°C	20-400°C	20-500°C
	10 ⁻⁶	16.5	17.5	17.5	18.5	19
Conductibilité thermique	W.m ⁻¹ .K ⁻¹	16			15.2	
Chaleur spécifique	J.kg ⁻¹ .K ⁻¹	500				
Intervalle de fusion	°C	1370-1400				
Magnétisme	Non magnétique					
Perméabilité relative	max 1.003					

Renonciation: Les informations et données de cette fiche technique ne sont qu'indicatives. Elles ne sont pas un mode d'emploi. Celui-ci doit être établi dans chaque cas par l'utilisateur de la matière.