

1.4614 - Acier inoxydable martensitique à durcissement structural

Caractéristiques et particularités

L'acier CHRONIFER® 465 KL est un acier inoxydable martensitique de qualité supérieure. Il est fondu VIM et refondu sous vide VAR. Il a été conçu pour atteindre une Rm à l'état écroui et durci H900 de jusqu'à 2090 MPa avec une excellente résistance aux entailles en traction et une ténacité élevée. A l'état durci H1000 il possède une combinaison très favorable de sa résistance mécanique, corrosion sous tension et ténacité. Sa résistance à la corrosion est similaire à celle de l'acier 1.4301.

Domaines d'utilisation

Cet acier est destiné aux utilisations de hautes exigences des industries aérospatiale, automobile, instrumentation médicale, chimique, pharmaceutique et alimentaire.

Normes

No matière 1.4614 AISI/SAE/ASTM ASTM F899

ASTM A564 Cap of H1000

UNS \$46500

AMS 5936 Cap of H1000 Rev

Composition chimique (‰)

С Ρ Si S Ni Τi Fe Mn Cr Мо solde 11.00 1.50 0.75 10.75 max. max. max. max. max. 0.02 0.010 12.50 1.25 11.25 0.25 0.25 0.015 1.80

Dimensions and tolérances

Ø < 2.50 mm: étiré à froid

Ø ≥ 2.50 mm: étiré à froid, meulé h8, rugosité Ra 0.4 (N5)

Tolérances plus serrées sur demande

Exécutions et états de livraison

Standard: barres de 3 m, recuites, Ø bars: 1.50 à 63.5 mm

Ø ≥ 6.00 mm: exécution <u>SWISSLINE</u>

Autres exécutions sur demande

Disponibilité

Dimensions courantes en stock, voir: Programme de vente

Propriétés mécaniques mesurées sur des fils

Propriétés mécaniques des fils									
Etat	Rm	R _{0.2}	A _{4d}	Striction	Dureté				
	(MPa)	(MPa)	(%)	(%)	HRc				
Recuit, mis en solution	950	770	20	75	29.5				
Traité H900 (482°C)	1779	1703	14	51	50				
Recuit									
+ écroui à froid 71%	1200	1125	12	74	38.5				
Recuit + écroui KV									
+ traité H900 (482°C)	2090	2020	10	57	53				

Conditions de coupe

Usinage: Relativement difficile

L'usinabilité du CHRONIFER® 465 KL est similaire à celle des aciers maraging. Vitesse de coupe: $V_c \approx 20$ - 30 m/min.

Lubrifiant: choix individuel

- Le traitement H1150M avant usinage améliore l'usinabilité. Cependant, les pièces usinées doivent impérativement être remises en solution avant le durcissement final.
- Les conditions de coupe optimales sont fonction de la machine-outil, des outils de coupe, de la taille du copeau, du lubrifiant, des tolérances, de l'état de surface à réaliser et de l'expérience de l'usineur.

1.4614 - Acier inoxydable martensitique à durcissement structural

Formage à chaud

Forgeage: 1010 – 1095°C, refroidissement à l'air

Un traitement de recuit (mise en solution) effectué après le formage à chaud, permet d'obtenir la combinaison optimale des propriétés mécaniques et de la résistance à la corrosion des pièces formées après leur durcissement final.

Déformation à froid

À froid: Facile à l'état recuit de mise en solution

- Dans cet état, cet acier présente un faible durcissement par écrouissage.

 Des taux de réduction élevés, de p.ex. 90% (déformation vraie ε = 2.2), peuvent être réalisés sans recuit intermédiaire.
- Un écrouissage avant durcissement permet d'atteindre à l'état traité H900 des valeurs de résistance Rm atteignant jusqu'à 2090 MPa.

Soudage

Réalisable.

- Le plus souvent à l'état recuit. Dans ce cas, le traitement de durcissement peut être effectué sans aucun traitement intermédiaire après le soudage.
- Prendre garde de ne pas utiliser un procédé de soudage pouvant provoquer une carburation.
- Un traitement de recuit de remise en solution après soudage permet d'obtenir un optimum entre les propriétés mécaniques et la résistance à la corrosion.
- Dans le cas de soudages pouvant créer des tensions internes importantes, il est préférable de les faire à l'état traité à 620°C (H1150), suivi d'un traitement de mise en solution avant le traitement de durcissement final.

Recuit

Recuit de mise en solution: $982 \pm 8^{\circ}$ C / 1h / trempe huile ou eau

- Optimum : recuit + réfrigération -80°C/≥8h • Pour obtenir les valeurs optimales, le traitement de réfrigération doit être effectué
- au plus tard dans les 24 h après celui de recuit.
 Un traitement de réfrigération à -80°C réduit la sensibilité des propriétés obtenues après durcissement à l'histoire thermomécanique antérieure du métal.

H1150M traitement pour améliorer l'usinabilité

 1^{er} durcissement : 760 ± 8°C / 2h / refroidissement à l'air 2^{em} durcissement : 621 ± 8°C / 4h / refroidissement à l'air

 Après usinage, un traitement de recuit doit être impérativement fait avant le traitement de durcissement final.

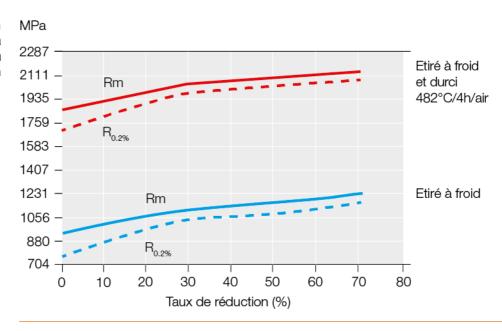
Traitements de durcissement

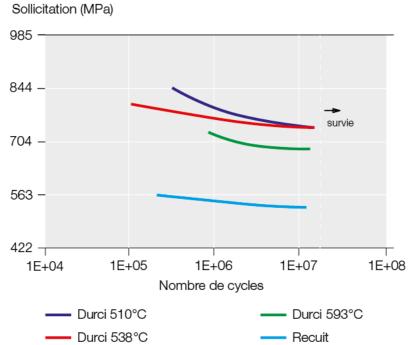
Domaine de température: 480 - 620°C/4 - 8h, trempe eau ou huile pour obtenir la ténacité optimale propre à chaque température de durcissement.

Etat	R _{0.2%}	UTS Rm	Allongement 4d	Contraction	
	L - T (MPa)	L - T (MPa)	L - T (%)	L* - T* (%)	
Mis en solution	683 – 683	951 - 951	20	_	
H900 (482°C)	1641 – 1613	1772 – 1772	13 – 12	0.08 - 0.07	
H950 (510°C)	1620 – 1586	1751 – 1724	14 – 12	0.11 – 0.10	
H1000 (538°C)	1496 – 1455	1593 – 1585	15 – 15	0.14 - 0.13	
H1050 (566°C)	1365 – 1351	1482 – 1469	18 – 17	0.16 - 0.16	
H1075 (580°C)	1234 – 1241	1400 – 1393	20 – 19	_	
H1100 (593°C)	1096 – 1089	1310 – 1310	22 – 21	0.23 - 0.23	
H1150M (621°C)	531 – 538	1076 – 1096	25 – 22	0.53 - 0.53	

L* signifie longitudinal, T* transversal

Le préfixe HXXXX indique le traitement de durcissement à la température XXXX en ${}^\circ\text{F}$


Le nombre entre parenthèses est la température de durcissement en °C. Conversion: °C = (°F-32)*0.5555



1.4614 - Acier inoxydable martensitique à durcissement structural

Influence d'un écrouissage sur la limite élastique R_{0.2%} la charge de rupture Rm

Comportement à la fatigue en flexion rotative selon RR Moore

1.4614 - Acier inoxydable martensitique à durcissement structural

Microstructures

État de livraison "recuit" et "recuit + étiré à froid": Martensite

Microstructure d'usinage: Martensite

Polissage

Bien adapté au polissage spéculaire

Marquage laser

 L'échauffement de la Zone Affectée Thermiquement (ZAT) peut altérer la microstructure et réduire sa résistance à la corrosion. Plus d'info.

Décapage et passivation

Il est recommandé d'utiliser des produits et des procédures de décapage et de passivation bien adaptées aux aciers inoxydables à durcissement structural.

• Pour éviter le phénomène de «flash back», il est recommandé de toujours effectuer un décapage avant le traitement de passivation. Plus d'info.

Résistance à la corrosion

Oxydation superficielle:

 La formation éventuelle d'oxydes colorés ou de calamine en cours des traitements thermiques, peut fortement réduire la résistance à la corrosion. Ces oxydations doivent être éliminées mécaniquement et ou chimiquement.

Précautions élémentaires

- Garder constamment les surfaces propres et polies.
- Veiller à éviter le séchage des résidus d'emploi adhérant sur la surface.
- Nettoyer les pièces sans retard après leur utilisation.
- Veiller à n'employer que des solutions de nettoyage et de lavage ne contenant pas de chlore. <u>Plus d'info.</u>

Propriétés physiques

Propriété	Unité	Etat				
		Recuit	H900	H1000	H1050	H1100
Densité	g cm ⁻³	7.82	7.83	7.85	7.85	7.87
Module élastique E	GPa			202.7		199.8
Résistance électrique	µohm-mm	946	824	822		772
Dilatation	10 ⁻⁶ (m m ⁻¹	K ⁻¹)				
20 – 100°C		10.30	10.40	10.60		11.30
20 – 200°C		10.80	11.10	11.10		12.00
20 – 400°C		11.10	11.70	11.70		12.70
20 – 600°C		9.86	11.20	12.20		13.10
Conductivité thermique						
à 23°C	W m ⁻¹ K ⁻¹	14.06	14.85	15.83		15.80
Propriétés magnétiques						
- Champ coercitif Hc	Oe	25.5	23.3	28.1	34.2	53.0
- Saturation Bs	kG	13.4	13.8	13.3	12.4	10.1

Référence

ALLOY Data, Custom 465® Stainless, Carpenter Technology Corporation

Renonciation: Les informations et données de cette fiche technique ne sont qu'indicatives. Elles ne sont pas un mode d'emploi. Celui-ci doit être établi dans chaque cas par l'utilisateur de la matière.