

1.6358/ASTM A-538 Precipitation hardening martensitic steel

Features and particularities

The DURIMPHY is a clean double vacuum VIM-VAR melted low C precipitation hardening martensitic steel. In the 830°C annealed /quenched condition, it exhibits a soft martensitic microstructure amenable to plastic deformation up to very high reductions and to machining. Its age hardening is preferably made at 480°C. The cumulative contributions of cold deformation and age hardening permit to obtain reproducibly hardness values of HRc 52-55. The precipitation hardening causes neither the formation of internal stresses, nor dimensional changes. In the hardened condition this steel shows high UTS/Rm and YS0.2/R0.2 strengths, as well as fatigue resistance, and notch impact resistance. This steel does not have a ductile-brittle transition temperature down to the coldest cryogenic temperatures. It can continuously be used up to max 400°C. It can easily be welded and brazed.

Uses

The DURIMPHY steel is used in a large number of applications in various industrial segments. For example for components for the aerospace industry, as well as parts for the micro-mechanical engineering and the watch making industry. Hoeever its low to fair corrosion resistance is a limiting factor.

Standard

Material number 1.2709
EN/DIN X3NiMoTi 18-9-5
ASTM/ANSI A-538
AMS 6514

Chemical composition

(%wt.)

UNS

С Si Mn S Ni Co Mo Τi others Fe max. max. max. max. 18.00 8.50 4.60 0.50 max. balance max. 0.03 0.10 0.10 0.010 0.010 19.00 9.50 5.20 0.80 1.20

Dimensions and executions

Round bars: 3 – 13 mm, cold drawn, 3m straightened, h6 ground

UTS/Rm and A% see Figure 2

K93160

Availability

Dimensions courantes en stock, see: Delivery program

Strength and machining

- In the annealed and cold worked conditions, the high ratio R_{0.2}/Rm ≥0.98% support and assist its machinability.
- In the cold deformed condition, the machining is influence by the actual UTS/Rm strength level.

Machining

Machining: favorable

Cutting speed: slow, $Vc \approx 20-40$ m/min Feed: average up to high

- The optimal cutting conditions depend on the machine tool, the cutting tools, the chip dimensions, the lubricant-cooling fluid, as well as the tolerances and surface the roughness to be achieved.
- The DURIMPHY steel is tough. Its machining requires the use of rigid machine tools, tooling and tools.

Deformation and shaping

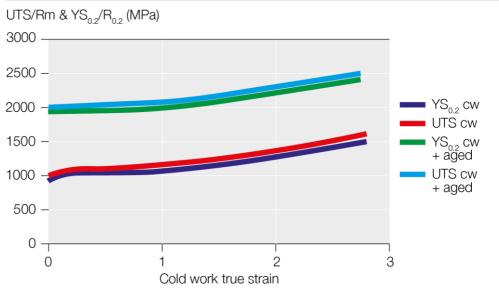
Warm: forging: 1050-850°C

The coldest forging or warm forming temperature is 850°C

Cold deformation: max. 400°C

1.6358/ASTM A-538 Precipitation hardening martensitic steel

Melting


VIM (Vacuum Induction Melting) + Remelting: VAR (Vacuum Arc Remelting)

Cleanliness

Clean microstructure, Double vacuum melting and remelting

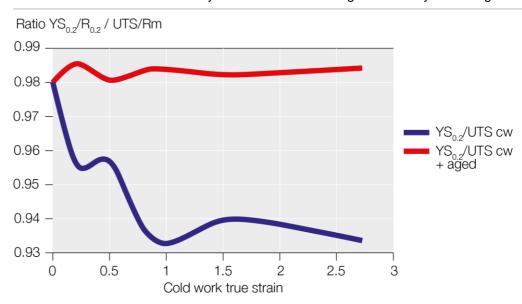
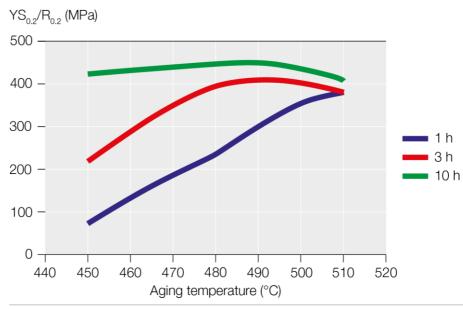

Strengthening

Figure 1 Influence of a cold deformation on UTS/Rm and YS_{0.2}/R_{0.2} with and without 480°C/3h aging

- The main feature of the DURIMPHY steel is its beneficial high YS_{0.2}/R_{0.2} yield strength YS, in all its conditions, annealed, cold deformed and aged.
- Figure 2 shows the ratio YS_{0.2}/R_{0.2} / UTS/Rm as function of the cold work. As shown, this ratio is above 98% in the annealed and cold worked conditions, its machining condition. A supportive situation for the chip formation during machining. After aging, this ratio decreases with the amount of cold work.
- The DURIMPHY steel is mostly used because of its high YS_{0.2}/R_{0.2} yield strength.

Figure 2 Ratio YS_{0.2}/R_{0.2} / UTS/Rm


The precipitation hardening or aging of the DURIMPHY steel is first due to the precipitation of the intermetallic compound Ni₃Ti, and second of the Fe₂Mo compound.
 These precipitates are very fine, low on the nanometric scale.

1.6358/ASTM A-538 Precipitation hardening martensitic steel

Figure 3 Relative influence of the aging temperature and holding time on YS_{0.2}/R_{0.2}

Thermal treatments Annealing

- Annealing: 830°C/1-4h/rapid cooling small parts 830°C/0.5-1h/rapid cooling Solution anneal: 830°C/1-4h/rapid cooling
- The rapid cooling prevents the retention of residual austenite.

Microstructures

Delivery condition: annealed: Martensite + cold worked martensite
Microstructure for machining: annealed soft martensite, 830°C/rapid cooling
cold worked annealed martensite

Microstructure for polishing: annealed soft or cold worked martensite

 The DURIMPHY steel is well adapted for "Haut de gamme" requirements of the watch making industry.

Aging

- Optimum aging: 480°C/3h
- The intensity of the aging is independent of prior cold work or forming.
- A too long aging decreases progressively the notch impact resistance.
- The aging contribution to Rm and R_{0.2} are additive tot he strengths present before aging.
- The additive contribution of an 480°C/3h aging is the same for all starting conditions. It amount to 940 MPa on UTS/Rm and 920 MPa on YS_{0.2}/ R_{0.2}.

Protective atmospheres

- The DURIMPHY steel is sensitive to H₂ (Hydrogen). H₂ embrittles it.
- All protective containing non-bound H₂ should be avoided.
- H₂ contaminated DURIMPHY steel can be purged by a 150°C/1-3h treatment, to eliminate all H₂ traces.

Laser marking

 The heated HAZ (Heat Affected Zone) during a normal laser marking absent of overheating, should not lead to changes of the microstructure and the fatigue resistance. More info

1.6358/ASTM A-538 Precipitation hardening martensitic steel

Figure 4 Contraction due to aging

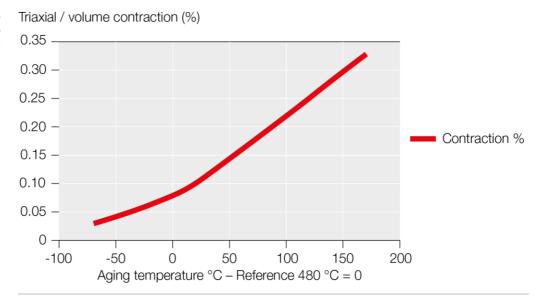
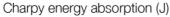



Figure 5
Influence of the aging
holding time at 480°C
on the Charpy
impact resistance

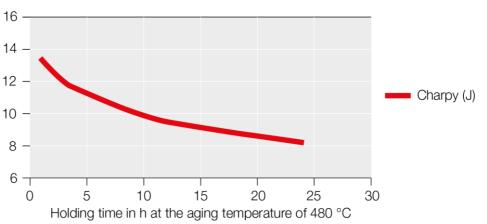
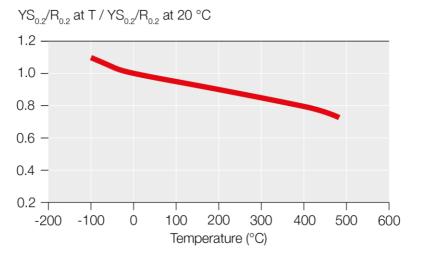



Figure 6 Influence of the temperature on the ratio YS_{0.2}/R_{0.2} at T / YS_{0.2}/R_{0.2} at 20°C

1.6358/ASTM A-538 Precipitation hardening martensitic steel

Corrosion resistance

 The DURIMPHY steel has a limited corrosion resistance only. In humid air it builds a rust layer.

Pickling solutions and processes

Process 1:

Chlorhydric acid: 4 parts
Water: 3 parts
Temperature: 70°C
Holding time: 20-30 min.

Intensive rinsing and drying

Process 2:

Nitric acid 70%: 5 parts
Fluorhydric acid 5%: 1 part
Water: 14 parts
Temperature: 25-30°C
Holding time: 90-120 sec.
Intensive rinsing and drying

Process 3:

Sulfuric acid: 93%: 3 parts

78% 4 parts

Water: 20 parts
Temperature: 65-75°C
Holding time: 15 min.
Intensive rinsing and drying

Process 4:

Sulfuric acid: 18%
Temperature: 65°C
Intensive rinsing and drying

Surface condition

 The DURIMPHY steel is mostly used because of its high elastic strength always near its UTS/Rm. Accordingly, the surfaces prior and after pickling should always be free of micro notches and defects which could reduce or limit its use.

Nitrification

Simultaneously to aging, the DURIMPHY steel can be enriched in N to obtain surface hardness up to 800 Hv and an improved wear resistance.

Welding

- The DURIMPHY can be easily welded.
- It is recommended to make an 820°C anneal after welding.

Brazing

- The DURIMPHY can be easily brazed.
- A degasing treatment at 150°C is recommended after brazing.

5/6

1.6358/ASTM A-538 Precipitation hardening martensitic steel

Physical properties

Properties	Unit	Temperature (°C)				
		20	200	300	400	500
Density	g cm ⁻³	8.0				
Young modulus E						
cold worked and aged	GPa	186-190				
Shear modulus G						
annealed		72-73				
Poisson coefficient	-	0.30				
Thermal conductivity	W.m ⁻¹ .K ⁻¹	20°C	100	200	300	400
	10 ⁻⁶	21	23	26	27	28
			480			
	10 ⁻⁶		28			
Electrical resistance	μΩ.cm	20°C				
- annealed 820°C	10 ⁻⁶	60-70				
- aged 480°C/3h	10 ⁻⁶	35-70	1128	1153	1179	
Thermal expansion	m/m ⁻¹ .K ⁻¹	20-100°C	20-200°C	20-300°C	20-400°C	20-480°C
	10 ⁻⁶	9.9	10.2	10.6	11.0	11.3
Specific heat	J.kg ⁻¹ .K ⁻¹	460				
Curie temperature	°C	450				
Magnetic saturation	Т	1.9				
Aging contraction	%	0.08				
Coercitive force	Oe			A/m		
annealed		23-24		1750-2700		
aged		21-54		1670-4300		
Remanence Br	Т	0.55				
Melting	°C	1430-1460				

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.